An a priori estimate for the singly periodic solutions of a semilinear equation

نویسندگان

  • Geneviève Allain
  • Anne Beaulieu
چکیده

We consider the positive solutions u of −∆u+u−u = 0 in [0, 2π]× RN−1, which are 2π-periodic in x1 and tend uniformly to 0 in the other variables. There exists a constant C such that any solution u verifies u(x1, x ′) ≤ Cw0(x) where w0 is the ground state solution of −∆v + v − v = 0 in RN−1. We prove that exactly the same estimate is true when the period is 2π/ε, even when ε tends to 0. We have a similar result for the gradient.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A two-phase free boundary problem for a semilinear elliptic equation

In this paper we study a two-phase free boundary problem for a semilinear elliptic equation on a bounded domain $Dsubset mathbb{R}^{n}$ with smooth boundary‎. ‎We give some results on the growth of solutions and characterize the free boundary points in terms of homogeneous harmonic polynomials using a fundamental result of Caffarelli and Friedman regarding the representation of functions whose ...

متن کامل

On a Semilinear Strongly Degenerate Parabolic Equation in an Unbounded Domain

We study the existence and long-time behavior of solutions to a semilinear strongly degenerate parabolic equation on R under an arbitrary polynomial growth order of the nonlinearity. To overcome some significant difficulty caused by the lack of compactness of the embeddings, the existence of global attractors is proved by combining the tail estimates method and the asymptotic a priori estimate ...

متن کامل

The existence result of a fuzzy implicit integro-differential equation in semilinear Banach space

In this paper‎, ‎the existence and uniqueness of the ‎solution of a nonlinear fully fuzzy implicit integro-differential equation‎ ‎arising in the field of fluid mechanics is investigated. ‎First,‎ an equivalency lemma ‎is ‎presented ‎by‎ which the problem understudy ‎is ‎converted‎ to ‎the‎ two different forms of integral equation depending on the kind of differentiability of the solution. Then...

متن کامل

Solving the inverse problem of determining an unknown control parameter in a semilinear parabolic equation

The inverse problem of identifying an unknown source control param- eter in a semilinear parabolic equation under an integral overdetermina- tion condition is considered. The series pattern solution of the proposed problem is obtained by using the weighted homotopy analysis method (WHAM). A description of the method for solving the problem and nding the unknown parameter is derived. Finally, tw...

متن کامل

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Asymptotic Analysis

دوره 76  شماره 

صفحات  -

تاریخ انتشار 2012